

QUESTION PAPER WITH SOLUTION

MATHEMATICS _ 3 Sep. _ SHIFT - 2

H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |🖂: info@motion.ac.in

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Q.1 If
$$x^3dy+xy dx=x^2dy+2y dx$$
; $y(2)=e$ and $x>1$, then $y(4)$ is equal to:

(1)
$$\frac{\sqrt{e}}{2}$$
 (2) $\frac{3}{2}\sqrt{e}$ (3) $\frac{1}{2} + \sqrt{e}$ (4) $\frac{3}{2} + \sqrt{e}$
Sol. 2
(x³ - x²)dy = (2 - x) ydx
 $\int \frac{dy}{y} = \int \frac{2 - x}{x^2(x - 1)} dx$
 $\int \frac{dy}{y} = -\int \frac{x - 1 - 1}{x^2(x - 1)} dx$
 $\int \frac{dy}{y} = -\int \frac{dx}{x^2} = \int \frac{x^2 - 1 - x^2}{x^2(x - 1)}$
 $= \frac{1}{x} - \int \frac{x + 1}{x^2} dx + \int \frac{dx}{x - 1}$
 $\ln|y| = \frac{2}{x} - \ln|x| + \ln|x - 1| + c$
 $x = 2, y = e$
 $1 = 1 - \ln 2 + c \Rightarrow c = \ln 2$
 $\ln|y| = \frac{2}{x} - \ln|x| + \ln|x - 1| + \ln 2$
 $put x = 4$
 $\ln|y| = \frac{1}{2} - 2\ln 2 + \ln 3 + \ln 2$
 $\ln y = \ln(\frac{3}{2}) + \frac{1}{2}$
 $y = \frac{3}{2} \cdot e^{\frac{1}{2}} = \frac{3}{2}\sqrt{e}$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

Q.2 Let A be a 3×3 matrix such that adj A = $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix}$ and B=adj(adj A).

If $|A| = \lambda$ and $|(B^{-1})^T| = \mu$, then the ordered pair, $(|\lambda|, \mu)$ is equal to:

(1)
$$\left(9,\frac{1}{81}\right)$$
 (2) $\left(9,\frac{1}{9}\right)$ (3) $\left(3,\frac{1}{81}\right)$ (4) (3, 81)

Sol. 3

$$adjA = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix} \Rightarrow |adjA| = 9$$

$$\Rightarrow |A|^{2} = 9 \Rightarrow |A| = 3 = |\lambda|$$

$$B = adj (adjA) = |A|. A = 3A$$

$$|(B^{T})^{-1}| = \frac{1}{|B^{T}|} = \frac{1}{|B|} = \frac{1}{|3A|} = \frac{1}{27 \times 3} = \frac{1}{81} = \mu$$

$$|\lambda|, \mu = \left(3, \frac{1}{81}\right)$$

Q.3 Let a, b, $c \in R$ be such that $a^2+b^2+c^2=1$, If $a\cos\theta=b\cos\left(\theta+\frac{2\pi}{3}\right)=c\cos\left(\theta+\frac{4\pi}{3}\right)$, where $\theta=\frac{\pi}{9}$, then the angle between the vectors $a\hat{i}+b\hat{j}+c\hat{k}$ and $b\hat{i}+c\hat{j}+a\hat{k}$ is

(1) $\frac{\pi}{2}$

1

(2) $\frac{2\pi}{3}$ (3) $\frac{\pi}{9}$ (4) 0

Sol.

$$\cos\alpha = \frac{ab + bc + ca}{a^2 + b^2 + c^2}$$
$$a\cos\theta = b\cos(\theta + \frac{2\pi}{3}) = \cos\left(\theta + \frac{4\pi}{3}\right) = \lambda$$

FOR JEE ADVANCED 2020

CRASH COURSE

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION[®] JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

$$\frac{1}{a} = \frac{\cos \theta}{\lambda}, \frac{1}{b} = \frac{\cos\left(\theta + 2\frac{\pi}{3}\right)}{\lambda}, \frac{1}{c} = \frac{\cos\left(\theta + \frac{4\pi}{3}\right)}{\lambda}$$
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{\lambda} \left[\cos \theta + \cos\left(\theta + \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{4\pi}{3}\right)\right]$$
$$= \frac{1}{\lambda} \frac{\sin\left[\left(3\right)\left(\frac{\pi}{3}\right)\right]}{\sin\left(\frac{\pi}{3}\right)} \cdot \cos\left[\frac{\theta + \theta + \frac{4\pi}{3}}{2}\right]$$
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$
$$\sum_{cosa} = 0$$
$$\alpha = \frac{\pi}{2}$$

Q.4 Suppose f(x) is a polynomial of degree four, having critical points at -1,0,1. If $T = \{x \in R \mid f(x) = f(0)\}$, then the sum of squares of all the elements of T is: (1) 6 (2) 2 (3) 8 (4) 4

Sol.

4

f'(x) = k (x + 1)x(x-1)f'(x) = k [x³ - x] Integrating both sides

$$f(x) = k \left\lfloor \frac{x^4}{4} - \frac{x^2}{2} \right\rfloor + C$$

$$f(0) = c$$

$$f(x) = f(0) \Rightarrow k \left(\frac{x^4}{4} - \frac{x^2}{2} \right) + C = C$$

$$\Rightarrow k \frac{x^2}{4} (x^2 - 2) = 0$$

$$\Rightarrow x = 0, \pm \sqrt{2}$$

sum of all of squares of elements = $o^2 + (\sqrt{2})^2 + (-\sqrt{2})^2$ = 4

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

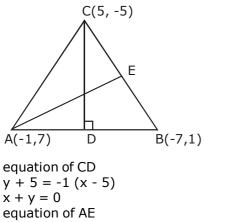
Motion

If the value of the integral $\int_0^{1/2} \frac{x^2}{(1-x^2)^{3/2}} dx$ is $\frac{k}{6}$, then k is equal to: Q.5 (1) $2\sqrt{3} + \pi$ (2) $3\sqrt{2} + \pi$ (3) $3\sqrt{2} - \pi$ (4) $2\sqrt{3} - \pi$ Sol. $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}} dx$ x = sin€ $\int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos^3 \theta} \cdot \cos \theta d\theta$ $\int_{0}^{\frac{\pi}{6}} \tan^2 \theta d\theta = \left[\tan \theta - \theta \right]_{0}^{\frac{\pi}{6}}$ $\Rightarrow \left(\frac{1}{\sqrt{3}} - \frac{\pi}{6}\right) = \frac{k}{6}$ $\frac{2\sqrt{3}-\pi}{6}=\frac{k}{6}$ $k = 2\sqrt{3} - \pi$ If the term independent of x in the expansion of $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ is k, then 18 k is equal to: Q.6 (1) 5 **3** (3)7 (2)9(4) 11Sol. $\mathsf{T}_{\mathsf{r+1}} = {}^{\mathsf{9}}\mathsf{C}_{\mathsf{r}} \left(\frac{3}{2}\,\mathsf{X}^2\right)^{\mathsf{9}-\mathsf{r}} \left(\frac{-1}{3\,\mathsf{x}}\right)^{\mathsf{r}}$ $= {}^{9}C_{r} \frac{3^{9-2r}}{2^{9-r}} (-1)^{r} . X^{18-3r}$ 18 - 3r = 0 \Rightarrow r=6 $= {}^{9}C_{r}\left(\frac{3^{-3}}{2^{3}}\right) = k$ $=\frac{7}{18}=k \Rightarrow 18k=7$

FREE Online Lectures Available on You Tube

CRASH COURSE

FOR JEE ADVANCED 2020


Go Premium at ₹ 1100 ● Doubt Support ● Advanced Level Test Access ● Live Test Paper Discussion ● Final Revision Exercises

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

7. If a $\triangle ABC$ has vertices A(-1,7), B(-7,1) and C(5,-5), then its orthocentre has coordinates:

(1) (-3,3) (2)
$$\left(-\frac{3}{5},\frac{3}{5}\right)$$
 (3) $\left(\frac{3}{5},-\frac{3}{5}\right)$ (4) (3,-3)

Sol. 1

- y + 5 = -1 (x 5)x + y = 0.....(1) equation of AE y - 7 = 2(x + 1)2x - y = -9....(2) from (1) & (2) x = -3, y = 3Othocentre = (-3, 3)
- Let e_1 and e_2 be the eccentricities of the ellipse, $\frac{x^2}{25} + \frac{y^2}{b^2} = 1$ (b<5) and the hyperbola, $\frac{x^2}{16} \frac{y^2}{b^2} = 1$ Q.8. respectively satisfying $e_1e_2=1$. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α,β) is equal to:

	(1) (8,12)	$(2)\left(\frac{24}{5},10\right)$	$(3)\left(\frac{20}{3},12\right)$	(4) (8,10)
Sol.	4 $\alpha = 10\mathbf{e}_{1}$ $\beta = 8\mathbf{e}_{2}$ $(\mathbf{e}_{1}\mathbf{e}_{2})^{2} = 1$ $\left(1 - \frac{\mathbf{b}^{2}}{25}\right)\left(1 + \frac{\mathbf{b}^{2}}{16}\right) = 1$	= 1	$b^{2} = 25(1 - e_{1}^{2})$ $b^{2} = 16(e_{2}^{2} - 1)$	
	CRASH COUR		Doubt	emium at ₹ 1100 Support ♦ Advanced Level Ti st Paper Discussion ♦ Final I

el Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

FREE Online Lectures Available on You Tube

Motion[®]

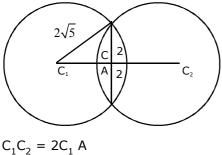
$$\Rightarrow 1 + \frac{b^2}{25} - \frac{b^2}{25} - \frac{b^4}{400} = 1$$

$$\Rightarrow \frac{9}{16.25} b^2 = \frac{b^4}{400} \Rightarrow b^2 = 9$$

$$e_1 = \frac{4}{5} \\ e_2 = \frac{5}{4} \end{bmatrix} = \alpha = 2ae_1 = 10 \times \frac{4}{5} = 8 \\ \beta = 2ae_2 = 8 \times \frac{5}{4} = 10 \end{bmatrix} = (\alpha, \beta) = (8, 10)$$

Q.9 If z_1 , z_2 are complex numbers such that $\operatorname{Re}(z_1) = |z_1 - 1|$, $\operatorname{Re}(z_2) = |z_2 - 1|$ and $\operatorname{arg}(z_1 - z_2) = \frac{\pi}{6}$, then $\operatorname{Im}(z_1 + z_2)$ is equal to:

	· 1 2/ ·			
	(1) $2\sqrt{3}$	(2) $\frac{2}{\sqrt{3}}$	(3) $\frac{1}{\sqrt{3}}$	(4) $\frac{\sqrt{3}}{2}$
Sol.	1			
	$z_{1} = x_{1} + iy_{1}, z_{2} = x_{1}^{2} = (x_{1} - 1)^{2} + y$ $\Rightarrow y_{1}^{2} - 2x_{1} + 1 = z_{1}^{2}$	0		(1)
	$x_{2}^{2} = (x_{2} - 1)^{2} + y_{2}^{2}$ $y_{2}^{2} - 2x_{2} - 1 = 0$ from equation (1)	2		(2)
	from equation (1) $(y_1^2 - y_2^2) + 2 (x_2)$			
	$(y_1 + y_2)(y_1 - y_2)$			
	$\mathbf{y}_1 + \mathbf{y}_2 = 2 \left(\frac{\mathbf{x}_1 - \mathbf{x}}{\mathbf{y}_1 - \mathbf{y}} \right)$	$\left(\frac{12}{2}\right)$		
	arg ($z_1 - z_2$) = $\frac{\pi}{6}$			
	$\tan^{-1}\left(\frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}\right) = \frac{\pi}{6}$			
	$\Rightarrow \frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2} = \frac{1}{\sqrt{3}}$			
	$\therefore y_1 + y_2 = 2\sqrt{3}$			


CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access • Live Test Paper Discussion ◆ Final Revision Exercises

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

- **Q.10** The set of all real values of λ for which the quadratic equations, $(\lambda^2 + 1)x^2 4\lambda x + 2 = 0$ always have exactly one root in the interval (0,1) is: (1) (-3,-1) (2) (2,4] (3) (1,3] (4) (0,2)
- Sol. 3 $f(0) f(1) \leq 0$ $\Rightarrow (2) [\lambda^2 - 4\lambda + 3] \leq 0$ $(\lambda - 1) (\lambda - 3) \leq 0$ $\Rightarrow \lambda \in [1, 3]$ at $\lambda = 1$ $2x^2 - 4x + 2 = 0$ $\Rightarrow (x - 1)^2 = 0$ x = 1, 1 $\therefore \lambda \in (1, 3]$
- **Q.11** Let the latus ractum of the parabola $y^2=4x$ be the common chord to the circles C_1 and C_2 each of them having radius $2\sqrt{5}$. Then, the distance between the centres of the circles C_1 and C_2 is:
 - (1) 8 (2) $8\sqrt{5}$ (3) $4\sqrt{5}$ (4) 12
- Sol. 1

$$(C_1 A)^2 + 4 = (2\sqrt{5})^2$$

 $(C_1 A)^2 + 4 = (2\sqrt{5})^2$
 $C_1 A = 4$
 $C_1 C_2 = 8$

Q.12 The plane which bisects the line joining the points (4, -2, 3) and (2, 4, -1) at right angles also passes through the point: (1) (0, -1, 1) (2) (4, 0, 1) (3) (4, 0, -1) (4) (0, 1, -1)

Sol.

3

A = 2, b = -6 (y, -2, -3) (3, 1, 1) (2, 4, -1) a = 2, b = -6 c = 4equation of plane 2(x - 3) + (-6) (y - 1) + 4(z - 1) = 0

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

 \Rightarrow 2x - 6y + 4z = 4 passes through (4, 0, -1)

Q.13 $\lim_{x \to a} \frac{(a+2x)^{\frac{1}{3}} - (3x)^{\frac{1}{3}}}{(3a+x)^{\frac{1}{3}} - (4x)^{\frac{1}{3}}} (a \neq 0) \text{ is equal to } :$

(1)
$$\left(\frac{2}{9}\right)^{\frac{4}{3}}$$
 (2) $\left(\frac{2}{3}\right)^{\frac{4}{3}}$ (3) $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{\frac{1}{3}}$ (4) $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{\frac{1}{3}}$

Sol.

Apply L-H Rule

$$\lim_{x \to a} \frac{\frac{2}{3} (a + 2x)^{\frac{-2}{3}} - 3^{\frac{1}{3}} \cdot \frac{1}{3} x^{-\frac{2}{3}}}{\frac{1}{3} (3a + x)^{\frac{-2}{3}} - 4^{\frac{1}{3}} \cdot \frac{1}{3} x^{-\frac{2}{3}}}$$
$$\Rightarrow \frac{\frac{2}{3} (3a)^{\frac{-2}{3}} - \frac{1}{3^{\frac{2}{3}}} \cdot \left(a^{-\frac{2}{3}}\right)}{\frac{1}{3} (4a)^{\frac{-2}{3}} - \frac{1}{3} \cdot 4^{\frac{1}{3}} \left(a^{-\frac{2}{3}}\right)}$$
$$= \frac{2}{3} \cdot \left(\frac{2}{9}\right)^{\frac{1}{3}}$$

Q.14 Let $x_i (1 \le i \le 10)$ be ten observations of a random variable X. If $\sum_{i=1}^{10} (x_i - p) = 3$ and $\sum_{i=1}^{10} (x_i - p)^2 = 9$

where $\ 0 \neq p \in R$, then the standard deviation of these observations is :

(1)
$$\frac{7}{10}$$
 (2) $\frac{9}{10}$ (3) $\sqrt{\frac{3}{5}}$ (4) $\frac{4}{5}$

Sol.

2

Standard deviation is free from shifting of origin

S. D = $\sqrt{variance}$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access Live Test Paper Discussion ◆ Final Revision Exercises

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

$$= \sqrt{\frac{9}{10} - \left(\frac{3}{10}\right)^2}$$
$$= \sqrt{\frac{9}{10} - \frac{9}{100}}$$
$$= \sqrt{\frac{81}{100}} = \frac{9}{10}$$

Q.15 The probability that a randomly chosen 5-digit number is made from exactly two digits is :

(1)
$$\frac{134}{10^4}$$
 (2) $\frac{121}{10^4}$ (3) $\frac{135}{10^4}$ (4) $\frac{150}{10^4}$
Sol. 3
Total case = 9(10⁴)
fav. case = 9C₂ (2⁵ - 2) + 9C₁ (2⁴ - 1)
= 1080 + 135 = 1215
Prob = $\frac{1215}{9 \times 10^4} = \frac{135}{10^4}$

Q.16 If
$$\int \sin^{-1} \left(\sqrt{\frac{x}{1+x}} \right) dx = A(x) \tan^{-1} \left(\sqrt{x} \right) + B(x) + C$$
, where C is a constant of integration, then the

√**1+x**

ordered pair (A(x),B(x)) can be:

(1)
$$(x+1, -\sqrt{x})$$
 (2) $(x-1, -\sqrt{x})$ (3) $(x+1, \sqrt{x})$ (4) $(x-1, \sqrt{x})$
1

Sol.

$$\int \sin^{-1} \sqrt{\frac{x}{1+x}} dx$$

$$\int \tan^{-1} \sqrt{x} \cdot \prod_{II} dx$$

$$\left(\tan^{-1} \sqrt{x}\right) \cdot x - \int \frac{x}{1+x} \cdot \frac{1}{2\sqrt{x}} dx$$
put $x = t^2 \Rightarrow dx = 2t dt$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

$$= x \tan^{-1} \sqrt{x} - \int \frac{(t^2)(2tdt)}{(1+t^2)(2t)}$$
$$= x \tan^{-1} \sqrt{x} - t + \tan^{-1} t + c$$
$$= x \tan^{-1} \sqrt{x} - \sqrt{x} + \tan^{-1} \sqrt{x} + t$$

$$A(x) = x + 1, B(x) = -\sqrt{x}$$

Q.17 If the sum of the series $20+19\frac{3}{5}+19\frac{1}{5}+18\frac{4}{5}+\dots$ upto nth term is 488 and the nth term is negative, then:

(1) n=60 (2) n=41 (3) nth term is -4 (4) nth term is $-4\frac{2}{5}$

С

Sol. 3

$$20 + \frac{98}{5} + \frac{96}{5} + \dots$$

$$S_{n} = 488$$

$$\Rightarrow \frac{n}{2} \left[2 \times 20 + (n-1) \left(\frac{-2}{5} \right) \right] = 488$$

$$\Rightarrow 20n - \frac{n^{2}}{5} + \frac{n}{5} = 488$$

$$\Rightarrow 100n - n^{2} + n = 2440$$

$$= n^{2} - 101n + 2440 = 0$$

$$\Rightarrow n = 61 \text{ or } 40$$

for n = 40, T_{n} = 20 + 39 \left(\frac{-2}{5} \right) = +ve

$$n = 61, T_{n} = 20 + 60 \left(\frac{-2}{5} \right) = 20 - 24 = -4$$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Q.18 Let p, q, r be three statements such that the truth value of $(p \land q) \rightarrow (\sim p \lor r)$ is F. Then the truth

 $\begin{array}{cccc} \text{values of } p, q, r \text{ are respectively :} \\ (1) F, T, F & (2) T, F, T & (3) T, T, F & (4) T, T, T \\ \textbf{Sol.} & \textbf{3} \\ & (p \land q) \rightarrow (\sim q \lor r) \\ \text{Possible when} \\ p \land q \rightarrow T \\ \sim q \lor r \rightarrow F \\ \hline p \rightarrow T \\ q \rightarrow T \\ r \rightarrow F \\ \hline r \rightarrow F \\ \hline r \rightarrow F \\ \end{array} \begin{array}{c} p \land q \Rightarrow T \\ \sim q \lor r \rightarrow F \lor F \Rightarrow F \\ T \rightarrow F \Rightarrow F \\ \hline \end{array}$

Q.19 If the surface area of a cube is increasing at a rate of $3.6 \text{ cm}^2/\text{sec}$, retaining its shape; then the rate of change of its volume (in cm³/sec), when the lenght of a side of the cube is 10cm, is : (1) 9 (2) 10 (3) 18 (4) 20

 $A = 6a^2$ a \rightarrow side of cube

$$\frac{dA}{dt} = 6\left(2a\frac{da}{dt}\right) \Rightarrow 3.6 = 12 \times 10 \frac{da}{dt} \Rightarrow \frac{da}{dt} = \frac{3}{100}$$

w = a³
dV 2n² da

$$\frac{dt}{dt} = \frac{3a^2}{dt}$$
$$= 3 \times 100 \times \frac{3}{100}$$

 $= 9 \text{cm}^3 / \text{sec}$

Q.20 Let R_1 and R_2 be two relations defined as follows:

$$R_{_1} = \{(a,b) \in R^2 : a^2 + b^2 \in Q\} \text{ and }$$

 $R_{_2}=\{(a,b)\in R^2: a^2+b^2\not\in Q\}$, where Q is the set of all rational numbers. Then :

- (1) R_1 is transitive but R_2 is not transitive
- (2) R_1^1 and R_2^2 are both transitive
- (3) R_2 is transitive but R_1 is not transitive
- (4) Neither R₁ nor R₂ is transitive

for R_1

Let
$$a = 1 + \sqrt{2}$$
, $b = 1 - \sqrt{2}$, $c = 8^{\frac{1}{4}}$

$$aR_1b a^2 + b^2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 6 \in Q$$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

$$\begin{split} b\mathsf{R}_1 c & b^2 + c^2 = (1 - \sqrt{2})^2 + \left(8^{\frac{1}{4}}\right)^2 = 3 \in \mathsf{Q} \\ a\mathsf{R}_1 c \Rightarrow a^2 + c^2 = \left(1 + \sqrt{2}\right) + \left(8^{1/4}\right)^2 = 3 + 4\sqrt{2} \notin \mathsf{Q} \\ \mathsf{R}_1 \text{ is not transitive} \\ \mathsf{R}_2 \\ \text{let } a = 1 + \sqrt{2} \text{ , } b = \sqrt{2} \text{ , } c = 1 - \sqrt{2} \\ a\mathsf{R}_2 b & a^2 + b^2 = 5 + 2\sqrt{2} \notin \mathsf{Q} \\ b\mathsf{R}_2 c & b^2 + c^2 = 5 - 2\sqrt{2} \notin \mathsf{Q} \\ a\mathsf{R}_2 c & a^2 + c^2 = 6 \in \mathsf{Q} \\ \mathsf{R}_2 \text{ is not transitive} \end{split}$$

Q.21 If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that 4th A.M. is equal to 2nd G.M., then m is equal to____ 39

Sol.

3,, 243

$$d = \frac{b-a}{n+1} = \frac{243-3}{m+1} = \frac{240}{m+1}$$

$$4^{tn} A.M = 3 + 4d = 3 + 4\left(\frac{240}{m+1}\right)$$

$$3 + \frac{960}{m+1} = 27$$

$$= \frac{960}{m+1} = 24$$

$$\Rightarrow m = 39$$

$$3, ..., 243$$

$$243 = 3(r)^{4}$$

$$r = 3$$

$$2^{nd} G.M. = ar^{2} = 27$$

Q.22 Let a plane P contain two lines $\vec{r} = \hat{i} + \lambda (\hat{i} + \hat{j}), \lambda \in R$ and $\vec{r} = -\hat{j} + \mu (\hat{j} - \hat{k}), \mu \in R$. If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from the point M(1,0,1) to P, then $3(\alpha + \beta + \gamma)$ equals _____ Sol. 5

$$\vec{\mathbf{r}} = \hat{\mathbf{i}} + \lambda \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} \right) \\ \vec{\mathbf{r}} = -\hat{\mathbf{j}} + \mu \left(\hat{\mathbf{j}} - \hat{\mathbf{k}} \right)$$

CRASH COURSE

FOR JEE ADVANCED 2020 FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{vmatrix}$$

= (-1, 1, 1) equation of plane -1(x - 1) + 1(y - 0) + 1(z - 0) = 0 \Rightarrow x - y - z - 1 = 0 foot of \perp^{r} from m(1, 0, 1)

$\frac{x-1}{1} = \frac{y-0}{-1} = \frac{z-1}{-1} = -\frac{\left(1-0-1-1\right)}{3}$
$\mathbf{x} - 1 = \frac{1}{3}$ $\left \frac{\mathbf{y}}{-1} = \frac{1}{3} \right $ $= \frac{\mathbf{z} - 1}{-1} = \frac{1}{3}$
$x = \frac{4}{2}, y = \frac{-1}{3}, z = \frac{2}{3}$
$\Rightarrow \begin{array}{c} \alpha = \frac{4}{3} \\ \beta = \frac{-1}{3} \\ \gamma = \frac{2}{3} \end{array}$
1 1 2 5

$$\alpha + \beta + \gamma = \frac{4}{3} - \frac{1}{3} + \frac{2}{3} = \frac{5}{3}$$

3(\alpha + \beta + \gamma) = 5

Q.23 Let S be the set of all integer solutions, (x, y, z), of the system of equations x - 2y + 5z = 0 -2x + 4y + z = 0-7x + 14y + 9z = 0

such that $15 \le x^2 + y^2 + z^2 \le 150$. Then, the number of elements in the set S is equal to _____

.....(1)

....(2)

.....(3)

Sol. 8

x - 2y + 5z = 0-2x + 4y + z = 0 -7x + 14y + 9z = 0 2.(1) + (2) we get z = 0, x = 2y

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

$\begin{array}{l} 15 \leq 4y^2 + y^2 \leq 150 \\ \Rightarrow 3 \leq y^2 \leq 30 \end{array}$ $y \in \left[-\sqrt{30}, -\sqrt{3} \right] \cup \left[\sqrt{3}, \sqrt{30} \right] \\ y = \pm 2, \pm 3, \pm 4, \pm 5 \\ \text{no. of integer's in S is 8} \end{array}$

Q.24 The total number of 3-digit numbers, whose sum of digits is 10, is _____

Sol. 54

 $\begin{array}{l} \mbox{Let } xyz \ be \ 3 \ digit \ number \\ x \ + \ y \ + \ z \ = \ 0 \ where \ x \ge 1, \ y \ge 0, \ z \ge 0 \end{array}$

 \Rightarrow t + y + z = 9

 $^{9 + 3 - 1}C_{3-1} = 11c_2 = 55$ but for t = 9, x = 10 not possible total numbers = 55 - 1 = 54

Q.25 If the tangent to the curve, y=e^x at a point (c,e^C) and the normal to the parabola, y²=4x at the point (1,2) intersect at the same point on the x-axis, then the value of c is _____
 Sol. 4

 $\begin{array}{c} \mathbf{x} - \mathbf{1} \ge \mathbf{0} \\ \mathbf{t} \ge \mathbf{0} \end{array} \right] \mathbf{x} - \mathbf{1} = \mathbf{t}$

 4
 Tangent at (c, e^c) y - e^c = e^c (x - c)(1)
(1)

 normal to parabola y - 2 = -1 (x - 1)
(2)

 x + y = 3
(2)

 at x-axis y = 0
 at x-axis y = 0

 in (1), x = c - 1
 in (2), x = 3

 c - 1 = 3 \Rightarrow c = 4

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Start Date: 07 Sept. 2020

Motion[®]

Admission **OPEN** जब इन्होने पूरा किया अपना सपना ती आप भी पा सकते है लक्ष्य अपना **JEE MAIN RESULT 2019**

Ritik Bansal

Marks

308

13th (2019)

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	😑 GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

Shiv Modi

Mark

318

13th (2019)

Nitin Gupta

Marks

335

13th (2019)

FEE STRUCTURE

Shubham Kumar

Marks

300

13th (2019)

		•	•
CLASS	SILVER	GOLD	PLATINUM
7th/8th	FREE	₹12,000	₹ 35,000
9th/10th	FREE	₹15,000	₹ 40,000
11th	FREE	₹ 29,999	₹ 49,999
12th	FREE	₹ 39,999	₹ 54,999
12th Pass	FREE	₹ 39,999	₹ 59,999

+ Student Kit will be provided at extra cost to Platinum Student.

SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.

GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.

*** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from : 16 & 23 September 2020

Zero Cost EMI Available

